Acta Cryst. (1966). 20, 812

The Crystal Structure of Tugtupite - a New Mineral, Na₈ Al₂ Be₂ Si₈ O₂₄ (Cl, S)₂

By Marianne Danø

Mineralogical-Geological Institute, The University of Copenhagen, Denmark

(Received 10 September 1965)

The structure of the new mineral tugtupite Na₈Al₂Be₂Si₈O₂₄(Cl,S)₂ has been determined by singlecrystal X-ray methods. The crystals are tetragonal with space group *I*4. They are strongly piezoelectric but show no pyroelectric effect. Optically the mineral is orthorhombic with values of $2V_{\gamma}$ up to 10° and $n_{\alpha} \simeq n_{\beta} = 1.496 \pm 0.001$, $n_{\gamma} = 1.502 \pm 0.002$. The specific gravity is 2.30 ± 0.02 . The unit-cell constants are $a = 8.583 \pm 0.004$, $c = 8.817 \pm 0.004$ Å. Atomic and thermal vibrational coordinates were refined to R =8.9% by full-matrix least-squares methods and with three-dimensional data. The following bond lengths were found:

> $Be-O = 1.608 \pm 0.012 \text{ Å}$ Al-O = 1.762 \pm 0.014 Si -O = 1.601 \pm 0.008

The last value is an average of four independent determinations.

Introduction

The mineral was described by Sørensen (1960, 1962) under the name of beryllium sodalite, and by Semenov & Bykov (1960), who used the name beryllo-sodalite. Its chemical and physical properties turned out to be so different from those of sodalite that a distinct name was justified. Tugtupite was suggested after the place where the mineral was originally found (Tugtup agtakôrfia in the Ilimaussaq intrusion, South Greenland), and this name was approved in 1965 by the I.M.A. Commission on New Minerals and Mineral Names.

Experimental

Chemical and physical properties

The result of a chemical analysis is given in Table 1. The formula of the mineral was calculated to be $Na_8Al_2Be_2Si_8O_{24}(Cl,S)_2$ with traces of K and Mg substituted for Na, the S content being about 5% of the Cl content.

Table	1.	Chemical	analysis	of	tugtupite
				٠,	

			Metal atoms
	Weight %	Metal atoms in 100 g	in 100 . <u>12⋅00</u> g†
SiO ₂	51.58	0.861	7.98
$Al_2\bar{O}_3$	11.15	0.219	2.03
Na ₂ O	25.52	0.822	7.62
BeO	5.40	0.216	2.00
Cl	7.28	0.202	1.90
S*	0.33	0.010	0.09
K ₂ O	0.12	0.002	0.02
MgO	0.20	0.002	0.02

* Present as S2-.

[†] The sum of Be, Al and Si was 1.295 in 100 g; in sodalite the sum of Al and Si is 12. The figures in the third column were therefore multiplied by the ratio $\frac{12.00}{1.295}$ to give the last column. The crystals are white when kept in darkness, but change to pink when exposed to daylight. Optically the mineral is orthorhombic with values of $2V_y$ up to 10°.

$$n_{\alpha} \simeq n_{\beta} = 1.496 \pm 0.001$$

 $n_{\gamma} = 1.502 \pm 0.002; c \neq \gamma$

The cleavage is good parallel to $\{110\}$ and $\{101\}$. (A more extensive crystallographic description will be given in *Medd. om Grønland*, vol. 181, No. 4).

Table 2. Observed and calculated values of $\sin^2 \theta$ up to 0.2500

$\sin^2 heta_{ m obs}$	Intensity	Indices	$\sin^2 heta_{ ext{calc}}$
0.0158	S	101	0.0157
0.0162	vw	110	0.0161
0.0306	w	002	0.0306
0.0323	vvw	200	0.0323
0.0467	т	112	0.0467
0.0480	vs	211	0.0480
0.0630	vvw?	202	0.0628
0.0647	vvw	220	0.0645
0.0770	vw	103	0.0769
0.0803	vw	301	0.0802
0.0808	vvw	310	0.0807
0.0952	m	222	0.0921
0.1093	w	213	0.1091
0.1113	w	312	0.1112
0.1126	w	321	0.1125
0.1384	W	114	0.1384
0.1413	w	303	0.1414
0.1451	m	{ 330 { 111	0.1452
0.1595	21147	402	0.1448
0.1612	11114	420	0.1613
0.1738	1)W	323	0.1737
0.1868	1011W	224	0.1869
0.1918	vw	422	0.1919
0.2026	vvw?	314	0.2030
0.2062	vw	413	0.2059
0.2093	w	431	0.2093
0.2314	vvw	215	0.2315
0.2410		[521	0.2416
0.2410	vvw?	j 512	0.2403

The specific gravity, as determined by hydrostatic weighing, is $2\cdot30\pm0\cdot02$, while the density calculated from the chemical analysis and the unit-cell volume is $2\cdot36$ g.cm⁻³. By means of differential thermal analysis it was ascertained that no reaction takes place below 630 °C. X-ray powder diagrams showed no change in symmetry when the mineral was heated to the melting point (~950 °C).

The crystals are strongly piezoelectric, but no pyroelectric effect could be detected.

X-ray data

The axes of the unit cell were determined at room temperature by the Guinier technique with Cu $K\alpha$ radiation ($\lambda = 1.5418$ Å):

$$a = b = 8.583 \pm 0.004 \text{ Å}$$

$$c = 8.817 \pm 0.004 \text{ Å}$$

$$V = 658 \text{ Å}^3$$

$$Z = 1$$

Table 2 gives the observed and calculated values of $\sin^2 \theta$ with their roughly estimated intensities. NaCl has been used as a standard, a = 5.6400 Å.

The symmetry of precession and Weissenberg films and the strong piezoelectric effect reduced the possible space groups to I4 and $I\overline{4}$. The only way of deciding between these two with certainty would be detection of a positive pyroelectric effect, which is allowed only for I4. The close relation with the sodalite structure (space group $P\overline{4}3m$ or $P\overline{4}3n$, see later) and the types of equivalent positions in the two space groups strongly favour $I\overline{4}$, and consequently the structure determination was started on the assumption of this space group. The final agreement between calculated and observed structure factors showed that the choice was correct.

Intensity data

An approximately equidimensional crystal (~ 0.3 mm) was rotated about the *c* axis, and the reciprocal layers hk0 - hk6 were recorded with unfiltered Cu radiation and the Weissenberg technique.

Another crystal ($\sim 0.4 \times 0.1$ mm), ground to ellipsoidal shape, was rotated along the long axis of the ellipsoid, which was nearly parallel to the *b* axis of the crystal, and the h0l - h6l reflexions were photographed. As the latter crystal turned out to be not quite perfect, only the equatorial reflexions were measured. The intensities were estimated visually by means of a calibrated strip. The multiple film technique was used and the conversion factors between the layers were determined experimentally. The exposure times for the packets were chosen so that one film from one packet should be more or less identical with a film in another packet.

As $I_{hkl} = I_{\bar{h}\bar{k}l}$ the same reflexions were measured on several films and on different positions within the film; in many cases β reflexions also gave valuable information. Due regard was paid to all measurements. In case of $\alpha_1 - \alpha_2$ splitting a weighted mean was calculated. The fourfold symmetry was checked and found to be fulfilled within the experimental error. (Optically, however, the symmetry is lower; see above.) Mean values of I_{hkl} and $I_{k\bar{h}l}$ were used when different. The intensities were corrected for Lorentz and polarization factors, but not for absorption; see later*.

Structure determination and refinement

The two Patterson projections P(uv) and P(uw) were in good agreement with what could be expected from knowledge of the sodalite structure: Cl in 000, Al and Be in $0\frac{11}{24}$ and $0\frac{13}{24}$ (only the refinement could decide the distribution between the two positions; see later), and Si in a general position with $xyz \simeq 0\frac{1}{4}$, the 12 metal atoms Be, Al, Si thus occupying the positions of Al and Si in sodalite. As Cl is in 000 the Patterson projections bear great resemblance to electron-density projections, and some information could be obtained about the other atoms. Two sets of O atoms stood out, but the last O was overlapped by Na and again use must be made of the sodalite structure, whose 24 O atoms can be divided into three groups corresponding to the three eightfold general positions in $I\overline{4}$. As the cubic space groups have cyclic rotation of the coordinates, a well resolved O atom in a projection will give information about the third coordinate of another O atom.

As the electron-density projection along the c axis is centrosymmetric the corresponding difference maps were calculated until R was 23%.

A minimum residual program (Bhuiya & Stanley, 1963) written by J. Danielsen refined the coordinates to R = 14% and R = 9% for the *hk*0 and *h0l* reflexions respectively. A common isotropic *B* value of 1.0 was used, and no attempt was made to vary the temperature factor at this stage. In order to calculate F_{h0l} Al and Be had to be placed in the twofold positions. Both possibilities were tried; the one with Be in $0\frac{1}{24}$ and Al in $0\frac{1}{24}$ converged more rapidly and was therefore used for the three-dimensional *R*-minimization later on. (The final least-squares calculations proved this choice to be correct; see below.)

Data from the reciprocal layers hk0-hk6 were put on the same scale using the h0l reflexions. For a given l the ratio between common F values from the two zones was not constant but varied with ξ because of absorption in the larger crystal used for recording the hk0-hk6 reflexions. The ratios were extrapolated to $\xi=0$. These preliminary values for the conversion factors between the layers were later refined in the usual way using F_{obs}/F_{calc} for each layer when more accurate coordinates were known. There seems to be a possibility of extinction, but no correction for this has been made. After a readjustment of the conversion factors the final

^{*} No allowance was made for spot shape distortion other than averaging the intensities of reflexions from the upper and lower half of the film.

h k l	10 F	10 F	h	k l	10 F	10 F _c	h	k	l	10 F	10 F _c	h	k	۱ 	10 F	10 F _c
1 - 11 0 0 - 10 0	89 136	95 123	3	61 61	637 452	545 418	6 1	-7 -6	3	382 572	398 516	0 2	-9 -9	5	98 304	85 330
2 -10 0	200	217	Ó	71	321	265	3	-6	3	547	541	1	-8	5	131	128
4 - 10 0	156	120	4	71	302	219 345	0	-0 -5	3	520	466	3	-8 -8	5	235	243
3 -9 0	260	245	6	71	181	176	2	-5	3	354	326	Ó	-7	5	312	283
5 -90	206 653	615	3	81	146	159	4	_4	3	185	165	4	-7	5	266 193	278
2 -8 0	61	56	5	8 1	293	308	3	-4	3	413	375	6	-7	5	363	368
4 - 80	190	191	0	91	265	219	2	-3	3	601	623	1	-6 -6	5	764	109
1 -7 0	147	126	2	91	354	327	1	-2	3	590	668	5	-6	5	439	453
5 -70	311	314	6	91	380	431	0	- 1	3	330	421	0	-5	5	109 456	419
7 -7 0	140	148	1	10 1	332	322	2	1	3	333	323	4	-5	5	370	364
2 -6 0	144	834		10 1	411	456	3	1	3	469 520	476		-4 -4	5	250 388	227
4 -6 0	166	140					2	-	3	751	778	Ó	-3	5	548	513
6 -6 U 1 -5 O	59	153	0	-10 2	154	157	4	ē	3	556	521	2	-3	5	687 263	684 239
3 - 5 0	225	197	2	-10 2	269	305	2	e	3	692	728	ò	-1	5	174	191
5 - 5 0	73 440	395	4	-10 2	100	131	5	2	× 3	67 399	39 325	1	23	5	453 641	467 645
9 - 5 0	67	69	3	-9 2	335	313	4	į	<u>,</u> 3	271	253	ĩ	4	5	611	537
0 -4 0 2 -4 0	385 405	387 376	5	-92	250 624	237 587	6	Ĩ	3	80 447	75 428	3	4	5	154 641	126 585
4 -4 0	894	1009	2	-8 2	178	167	3	ē	ŚŚ	150	120	Ĩ	5	5	196	178
6 -4 0 8 -4 0	362 475	333 437	4	-8 2	158 163	151 174	5	د ع	53	148	139 175	1	6	5	351	321 244
10 -4 0	154	166	1	-72	268	236	2	Ş	5	327	322	5	6	5	395	395
1 - 3 0	462 981	534	3	-72	434	414 148	4	10)])]	135	139	2	7	5	239 186	219
5 - 3 0	373	337	7	-7 2	367	402	3	10	5 3	218	238	6	7	5	279	283
7 - 30	469 251	448 260	0	-6 2	226	215 634						1	8	5	131	140
0 -2 0	248	239	4	-6 2	156	143		-10) 4) 4	254 43	270	5	8	5	270	262
2 -2 0	338 383	338 353	6	-6 2	446	465	Ĩ	-9	54	377	394	2	9	5	442	450
6 -2 0	446	399	3	-5 2	797	789	3	-9	94 54	145	144	1	9	2	99	122
8 -2 0 10 -2 0	698 115	687 116	5	-52	462	443	ó	-8	34	698	702	1	-9	6	131	122
1 -1 0	283	264	2	-4 2	553	553	2 1	-8	34 34	361 450	362 433	0	-8	6	221	224
3 -10	135 48	137 52	4	-4 2	880 401	918 308	6	-8	3 4	210	249	4	0 -8	6	57 483	558
7 -1 0	127	124	3	-3 2	301	251	1		74	197	179	1	-7	6	97	69
9 -1 0	197	186		-2 2	153 769	154	5	_	4	219	218	5	-7	6	166	182
			Ĩ	-1 2	621	871			74	99 281	85 242	0	-6	6	124	125
1 - 10 1 3 - 10 1	446 187	479 204		32	441	446	2	-6	5 4	410	345	4	-6	6	117	472 93
2 -9 1	196	225	ĩ	5 2	437	428	4	-0	54	130	127	6	-6	6	368	363
4 -9 1	103 174	131 180	3	52	249 430	234	1		5 4	390	328	3	-5 -5	6	176	176
1 -8 1	273	233	- 4	62	391	373	3		54	345 106	308 112	5	-5	6	217	210
5 -8 1	80 116	54 113		72	815 351	771 304	ó	_1	4	96.5	1117	2	_4	6	234	205
7 -8 1	395	474	5	7 2	260	266	2		44	627 866	628 951	4	-4	6	315	266
4 -7 1	810 95	674 112	2	82	267 406	225 386	1	-:	3 4	254	208	3	-3	6	612	609
6 -7 1	222	219	6	8 2	158	142	3		34	248 294	215	0	-2	6	148 588	154
3 -6 1	304	268		92	199 86	212 76	2	-2	2 4	475	492	î	-1	6	166	167
5 -6 1	606	576	5	92	315	311			34	686 299	834 279	1	3	6	578	551
4 -5 1	523	460 505	2	10 2	360	378 72	2	Ī	4 4	627	647	1	5	6	319	280
1 -4 1	711	723			//	7-		-	54	381	348	3	5	6	358	335
3 -4 1	767 452	803 448	Ι.	-10.2	340	hak	2	ē	54	389	334	2	6	6 6	581 287	570 274
1 -2 1	800	1071	3	-10 3	97	89	4		54	302	281	1	7	6	194	199
0 -1 1	444 800	518 1071	0	-9 3	133	122	5		7 4	254	260	35	7	6	120 531	126 567
0 31	453	458	4	-93	193	297 170	5		74	66	76	2	8	6	184	181
2 3 1	614 740	627	1	-8 3	417	439	4	2	34	69 546	06 552	4	8 0	6	244 350	249
3 41	326	315	5	-8 3	469	437	6	8	3 4	271	278		,	5		ا در
	212	211	7	-8 2	119	126	5	2	<i>4</i>	≈35 60	257 75					
4 51	252	229	2	-73	536 289	469 259	Ź	10	94	168	176					
1 6 1	60	49	4	-7 3	95	71										

 Table 3. Observed and calculated structure factors

Fig. 1. Modified clinographic projection of tugtupite. $\varphi = 9^{\circ} 28'$ is the angle of elevation in the *a*-*c* plane of the lines of projection *after* the rotation $\theta = 18^{\circ} 26'$ about the *c* axis. In this special kind of projection the *b* and *c* axes remain in the plane of the paper and mutually perpendicular. The *a* axis points towards the reader to the left. The corners of the unit cell are indicated by crosses. In (*a*) only the Si, Be, Al and O are shown, while the complete structure is given in (*b*).

with

$$A_1 = 5.0$$

 $A_2 = 10; B_2 = -1; F_{\min} \simeq 2.0$

All possible reflexions were observed, except five. These were not included in the least-squares calculations. *f* values were taken from *International Tables for X-ray Crystallography* (1962, pp. 202–3), and values for neutral atoms were used. Only isotropic temperature factors were introduced and refined with the positional parameters.

Results and conclusions

The observed and calculated structure factors are given in Table 3 as ten times the absolute values. The final atomic positions with their Debye temperature factors are found in Table 4.

As mentioned above, the crystal is not small enough for the absorption to be negligible ($\mu \sim 86 \text{ cm}^{-1}$). The *B* values determined by the least-squares method are consequently too low. Especially the *hk*0 reflexions seem to be affected.

The structure consists of linked MO₄ tetrahedra with M = Be, Al and Si as the metallic cations (Fig. 1). These tetrahedra share corners, Cl and Na being placed in holes in the framework. Characteristic are the 8rings with alternating metal and oxygen atoms. One third of the rings contain only Si, while the rest have Be, Si and Al alternating. Fig. 1(a) shows the arrangement of the 8-rings. Fig. 1(b) gives the complete structure. As Be and Al are placed on a fourfold axis the BeO₄ and AlO₄ tetrahedra are regular. The metaloxygen distances are 1.608 ± 0.012 Å and 1.762 ± 0.014 Å for Be–O and Al–O respectively. The SiO₄ tetrahedra, however, are distorted. Of the four O atoms in the tetrahedron, two are bound to other Si atoms, one to Be and one to Al. The bond lengths with their standard deviations are given in Table 5. The Si-O distances in the pure rings are 1.646 (A) and 1.611 (B) alternating, while the mixed rings have distances of 1.588(C) when O is linked to Be and 1.566 (F) when linked to Al.

Table 4. Atomic coordinates and thermal parameters with their standard deviations

	x/a	$\sigma(x a)$	y/b	$\sigma(y/b)$	z/c	$\sigma(z/c)$	В	$\sigma(B)$
0(1)	0.1471	0.0008	0.1332	0.0008	0.4431	0.0013	0.63	0.14
O(2)	0.3467	0.0009	0.0362	0.0009	0.6512	0.0012	0.86	0.13
$\tilde{O}(3)$	0.4261	0.0008	0.1506	0.0008	0.1347	0.0014	0.79	0.13
Na	0.1575	0.0005	0.1970	0.0005	0.1815	0.0008	1.12	0.10
Si	0.0134	0.0003	0.2535	0.0003	0.4956	0.0002	0.22	0.08
Be	0.0000		0.5000	_	0.2200	_	0.66	0.41
Al	0.0000		0.5000	_	0.7500	_	0.26	0.10
Cl	0.0000		0.0000		0.0000	—	1.50	0.11

Ta	ble	5.	Bond	lengths	with	their	standard	deviations
----	-----	----	------	---------	------	-------	----------	------------

816

	Bond	M-O Distance	σ
Si-O	Α	1·646 Å	0·014 Å
Si–O	В	1.611	0.013
Si–O	С	1.580	0.018
Si–O	D	1.566	0.017
Average:		1.601	0.008*
Al-O	Ε	1.762	0.014
Be-O	F	1.608	0.012

* Taken as the average of σ divided by the square root of the numbers of independent determinations, as suggested by Smith & Bailey (1963).

Smith & Bailey (1963) give as best values for Si-O and Al-O 1.61 Å and 1.75 Å respectively, and our values agree within the experimental error. Only a few Be-O distances have been reported in the literature, but the value found in tugtupite falls within the interval given by International Tables for X-ray Crystallography (1962, p. 260). The question of the space group of sodalite, Na₈Al₆Si₆O₂₄Cl₂, is still open. In the paper of Pauling (1930) it was given as $P\overline{4}3n$, while Barth (1932) argued for $P\overline{4}3m$. Later Saalfeld (1961) discussed the matter in relation to other members of the sodalite group and proposed the space group $P\bar{4}3n$. With the technique used in the early structure determinations it was not possible to determine the Si-O and Al-O distances with sufficient accuracy to decide whether the 6 Al and 6 Si are in two different special positions ($P\bar{4}3n$) or statistically distributed in a 12-fold position ($P\bar{4}3m$).

In view of the ordered arrangement of the cations of tugtupite it seems worth while to re-examine the structure of sodalite. We hope to be able to do so in the near future.

The author wishes to thank H.Sørensen for supplying the crystals, H. Micheelsen and O. V. Petersen for the optical description and the specific gravity measurements, M. Mouritzen for the chemical analysis, and Chr. Rømming and Norsk Regnecentral, Oslo, for the least-squares calculations. The other calculations were made possible by a grant from the Danish State Research Foundation. Special thanks are due to E. Krogh Andersen for many helpful discussions and good advice during the final stage of the structure determination.

References

BARTH, T. F. W. (1932). Z. Kristallogr. 83, 405.

- BHUIYA, A. K. & STANLEY, E. (1963). Acta Cryst. 16, 981.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). A Fortran Crystallographic Least-Squares Program, OR NL-TM-305. Oak Ridge National Laboratories, Tennessee.
- International Tables for X-ray Crystallography (1962). Birmingham: Kynoch Press.
- PAULING, L. (1930). Z. Kristallogr. 74, 213.
- SAALFELD, H. (1961). Z. Kristallogr. 115, 132.
- SEMENOV, E. I. & BYKOV, A. V. (1960). Doklady Akad. Nauk SSSR, 133, 1191. (In Russian).
- SMITH, J. V. & BAILEY, S. W. (1963). Acta Cryst. 16, 801.
- SØRENSEN, H. (1960). Report of the International Geol. Congress. XXI Session, Norden. Part XVII, 31.
- SøRENSEN, H. (1962). Medd. om Grønland. 167, No. 1.

Acta Cryst. (1966). 20, 816

On the Equivalence of Structure Invariants*

BY HERBERT HAUPTMAN

U.S. Naval Research Laboratory Washington, D.C., U.S.A.

(Received 12 July 1965 and in revised form 20 September 1965)

The triangle in reciprocal space associated with a given structure invariant is defined and the concept of the equivalence of structure invariants is introduced. It is assumed that many of the interatomic triangles (especially the smaller ones) in a crystal structure are congruent to each other and that the triangles in each collection of congruent interatomic triangles are more or less randomly oriented in space. Under these assumptions the values of equivalent structure invariants are approximately equal, especially if the sides of the associated triangle are small. This result facilitates the solution of the problem of direct phase determination for structures satisfying our assumptions.

1. Introduction

The structure invariants are those entities whose values are uniquely determined by a crystal structure. They play a fundamental role in the problem of direct phase

* Presented at the Suffern, N.Y., meeting of the American

Crystallographic Association in February, 1965.

determination. An important set of structure invariants consists of the linear combinations of the phases

$$\varphi_1 + \varphi_2 + \varphi_3 , \qquad (1.1)$$

in which the abbreviations

$$\varphi_i = \varphi_{\mathbf{h}_i}, \quad i = 1, 2, 3, \quad (1.2)$$

have been used and the assumption